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Abstract—Phantom limb pain has a negative effect on the life
of individuals as a frequent consequence of limb amputation. The
movement ability on the lost extremity can still be maintained
after the amputation or deafferentation, which is called the
phantom movement. The detection of these movements makes
sense for cybertherapy and prosthetic control for amputees. In
this paper, we employed several deep learning approaches to
recognize phantom movements of the three different amputation
regions including above-elbow, below-knee and above-knee. We
created a dataset that contains 25 healthy and 16 amputee
participants’ surface electromyography (sEMG) readings via a
wearable device with 2-channel EMG sensors. We compared
the results of three different deep learning methods, respec-
tively, Multilayer Perceptron, Convolutional Neural Network,
and Recurrent Neural Network with the accuracies of two well-
known shallow methods, k Nearest Neighbor and Random Forest.
Our experiments indicate, Convolutional Neural Network-based
model achieved an accuracy of 74.48% in recognizing phantom
movements of amputees.

Index Terms—Phantom Limb Pain, Phantom Movement, Deep
Learning, EMG, Movement Recognition

I. INTRODUCTION

Phantom limb sensation (PLS) is the perception that the
missing limb still exists and its orientation in space continues
after amputation [1]. The majority of amputees experience
PLS which includes the sensation of pressure, itchiness and
warmth changes in the phantom extremity [2]. Furthermore, a
significant majority of individuals with PLS experience severe
phantom limb pain (PLP), particularly in the early period after
amputation [3].

The most accepted theory about the underlying mechanism
of PLP is the cortical remapping theory of the central nervous
system, involving neuroplastic changes in the somatosensory
cortex and motor cortex after amputation [2], [4]. It is sug-
gested that deprivation of the sensory input of the primary
somatosensory cortex after amputation leads to cortical re-
organization, where the deprived cortex becomes susceptible
to the input from the cortical neighbors and inputs displayed
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toward the cortical area that represents the missing limb also
induce painful representations of the amputated limb [4].

Several studies demonstrated that the primary somatosen-
sory cortex processes signals from the amputated extremity
and primary motor cortex continues to send motor responses
despite cortical reorganization [5], [6]. Thus, most of the
patients can control phantom movements, also called phantom
motor execution (PME), such as moving their toes, opening
and closing their hands after surgery. These motor responses
are unable to reflect the muscles in the amputated limb,
resulting in activation of the residual limb muscle and generate
a new muscle activation pattern specific to phantom movement
[7].

PME is voluntarily control of performing phantom move-
ments and provides the appropriate input and output compo-
nent of the muscle activation circuit. Utilizing the PME would
reduce PLP by activating the original motor area of the am-
putated extremity and normalizing the cortical representation.
Also increasing in motor control of muscles at the residual
limb would expand cortical representation. To facilitate PME,
mirror therapy has been utilized [8]. However, the real motor
execution of the patient remains uncertain due to motor
responses cannot be measured. For efficient rehabilitation to
reduce PLP and increase the ability of amputees to control
the myoelectric prosthesis, it is essential to ensure PME.
Myoelectric conversion of voluntary phantom movement at the
stump as pattern recognition provides PME to be performed
[9].

Recent researches have used muscle-computer interface for
the recognition of phantom movements. Surface Electromyog-
raphy (sEMG) is used by placing electrodes on the motor unite
of the target muscle to record skeletal muscle activation signals
during contraction. However, recognizing and classifying the
phantom movements of the amputees is different from the
movement of an existing joint. The signals recorded with
sEMG during the phantom movements of the individual are
received from remaining muscles that would not be ordinarily
activated.

Myoelectric pattern recognition (MPR) that is commonly
represented by a virtual extremity and provides appropriate978-1-7281-2420-9/19/$31.00 ©2019 IEEE
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visual feedback is utilized for prediction of the PME. MPR
empowers to be performed of phantom movements in thera-
peutic tasks based on motor execution of the missing limb.
This study aims to recognize and classify the signals obtained
from sEMG that measure neuromuscular activity in the four
different amputation region by using deep learning algorithms.

II. BACKGROUND
Deep learning is mainly based on learning multiple levels

or representations of data. Deep learning algorithms have the
ability to learn distinctive features from large amounts of data
automatically [10]. Traditional machine learning is based on
shallow networks consisting of an input and an output layer
and no more than one hidden layer between the input and
output layers. Compared to shallow learning, deep learning as
a subfield of machine learning has the advantage of creating
deep architectures to learn more intangible information [11].

Researches about MPR and classification of the phantom
movement have included controlling myoelectric prosthesis
and management of PLP. Powell et al. (2014) assessed
the ability of four transradial amputees to control a pat-
tern recognition-based myoelectric prostheses capable of nine
classes of movement and used Linear Discriminant Analysis
(LDA) as classifier [12]. Jarrasse et al. (2016) classified phan-
tom finger, hand, wrist and elbow voluntary gestures based on
the analysis of sEMG signals measured by multiple electrodes
placed on the residual upper arm of 5 transhumeral amputees
with a controllable phantom limb used LDA as classifier
[13]. Ghazaei1 et al. (2017) developed a deep learning-based
artificial vision system to augment the grasp functionality
of a commercial prosthesis and used Convolutional Neural
Network (CNN) as classifier [14].

Ortiz-Catalan et al. (2013), developped an open access
research platform called BioPatRec for the development and
evaluation of MPR algorithms in prosthetic control [15]. Then,
they utilized MPR to predict simultaneous phantom move-
ments and as input for augmented reality (AR) environment
to relieve chronic PLP [16]. They also compared offline and
real time classification accuracy and all the studied offline
metrics failed to predict real-time decoding [17]. After that,
they used machine learning to restore neuromuscular activity
in the residual limb while the patient executes phantom limb
movements in a virtual environment. It was reported that
phantom limb motor applications significantly reduce phantom
pain [9]. Lendaro et al. (2017), classified non-weight bearing
lower-limb movements using sEMG to facilitate PME and used
BioPatRec algorithms for the MPR [18]. Also, they used MPR
for the treatment of PLP but clinical trial is currently in the
participant enrolment phase [19].

Considering previous studies, our research have been dis-
tinct in terms of recognizing phantom movements from the
four different amputation area, using deep learning approach
for the maximal accuracy of the recognition.

III. MATERIALS AND METHODS
The aim of this study is to provide an efficient classifier

in the use of phantom movement recognition. Previously

Akbulut et. al. [20] proposed a cybertherapy system that aims
to reduce the PLP with creating virtual environments for
amputee people. Such system needs to be fed by accurate
movement identification which will be used in interactive
therapy games. Proposed system consists of 4 main parts; a
wearable sensor to collect sEMG data, real-time classifier to
recognize phantom movements, virtual reality-based therapy
games and web services to communicate different modules of
the system.

With the spread of deep learning methods, their use in
machine learning problems has increased. We aimed to show
the effectiveness of these approaches by employing in our
classifier. To train these models, a preliminary data had to
be collected and evaluated for its accuracies. 4 different limps
(hand, forearm, foot, leg) are considered to be recognized by
the classifier and the moves for these limbs are listed below.
Since each amputated limb requires different environment,
data is collected for each body section separately.

1) Transradial Amputation and Wrist Disarticulation
(TAWD): Extension, Flexion, Grip, Release

2) Transhumeral Amputation and Elbow Disarticula-
tion (TAED): Extension, Flexion

3) Transtibial Amputation and Ankle Disarticulation
(TAAD): Extension, Flexion

4) Transfemoral Amputation and Knee Disarticulation
(TAKD): Extension, Flexion

To build the dataset in training the classifier, signals were
recorded via a 2-channel sEMG sensor during the phantom
movement of the amputees through electrodes placed around
the residual limb. Amputations from 8 regions were found
suitable for measurement. In the case of wrist disarticulation
and transradial amputation, we aimed to obtain sEMG signals
from the flexor and extensor muscles of the wrist and finger. In
order to recognize phantom movement in elbow disarticulation
and transhumeral amputation, electrodes were placed on the
residual part of the biceps brachii for elbow flexion and triceps
muscle for elbow extension. During phantom dorsiflexion and
plantar flexion of the ankle, signals were obtained from tib-
ialis anterior and gastrocnemius muscles respectively. sEMG
signals were obtained for knee flexion and extension in knee
disarticulation and transfemoral amputation. Electrodes were
placed on residual part of the quadriceps muscle for phantom
knee extension and the hamstring muscle for phantom knee
flexion. A number was given to each joint region and to the
movement performed in that joint. Below-elbow was named
as first region (1), above-elbow as second (2), below-knee as
third (3) and above-knee as fourth (4). Finger grip were coded
as 1, finger release as 2, wrist flexion as 3 and extension as
4. In all other regions, flexion was coded as 1 and extension
was coded as 2.

3 seconds determined as sufficient to identify a move and
the data collection module is capable to get 20 samples for
each sensors in a second. An additional amplifier is used for
collection module to get more clear data. Dataset contains 25
healthy and 16 amputee people data together. The distribution
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of the collected samples are given in Table I. Since TAWD
amputee participant couldn’t be found, therefore this section
is excluded for amputees.

TABLE I
MOVE COUNTS UP TO CLASSES

Below
Elbow

Above
Elbow

Below
Knee

Above
Knee

Healthy 1679 1000 1000 1000
Amputee - 80 452 120

As the classification approach of our model, initially we
worked with shallow models such as; kNN (k Nearest Neigh-
bor) and Decision Tree that did not produce satisfied results.
Thus, we employed more complicated methods to increase
movement recognition accuracy. MLP (Multilayer perceptron),
CNN (Convolutional Neural Network) and RNN (Recurrent
Neural Network) are the ones implemented so far.

kNN (k Nearest Neighbor): With kNN, the input data is
compared with the others in the dataset. Whichever data is the
most similar to a cluster is considered in the same class. In
this model, according to closest 3 neighbors, a class is defined
for the input data.

Decision Tree: The purpose of this well-known algorithm
is to determine the properties that have the most effect on
the results and to create trees according to these features. The
entropy equation is used to find out which sample is most
effective in the results. Then other entropies are calculated
according to this first number and sub-branches of the tree are
started to be formed.

Multilayer Perceptron (MLP): MLP model based on the
method workings of the human brain and by using artificial
neural cells in layers, artificial neural networks are formed.
These networks have an input layer, a hidden layer and an
output layer. In our model, we have 120 data input layers at
one time. After passing 60 artificial nerve cells in the hidden
layer, they are divided into 2 or 4 classes in the output layer
(Figure 1).

Fig. 1. 3 Layer MLP Network Architecture

Convolutional Neural Network (CNN): In order to achieve
more accurate movement recognition in amputated patients,
CNN network was also utilized in our experiments. This
network is mostly utilized for image classification and so,
our approach here is to preprocess the data as making it a
2-dimensional array. A movement in our dataset consists of

120 samples. In the algorithm, we include a “0” to the end
of this data to form a 11x11 matrice, following that this 121
data sequence was processed with multiple layers. Our model
consists of 2 convolutional and one hidden layers. The general
view of our model is shown in Figure 2.

Fig. 2. CNN model Architecture

Recurrent Neural Network (RNN): RNN is a typical MLP
except it has an extra weight that called as hidden state for
each cell of hidden layer. Previous weight values are stored
and then being used as inputs for neurons with new inputs.
Each RNN cell processes old and new input together and that
is why RNN is a good way of fusing current and past data.
Eventually, it is very suitable for interpretation of repetitive
sequential data. The RNN model for this study (Figure 3) uses
3 layers of 128, 64 and 32 cells and 1 dense layer of 16 cells.

Fig. 3. RNN model Architecture

When all the models are compared (Table II), kNN model
is only successful for healthy TAAD with 87.5%. However,
TAWD classification which has 4 classes was not sufficient
with accuracy 65.93%. That’s why general accuracy is not high
for healthy people. For amputee patients, it has 65.2% average
accuracy which is not sufficient for the virtual environment.
Decision Tree has less accuracy except for amputee TAKD,
so it can not be used as a classification model either. MLP’s
achievement is the TAWD accuracy (73.85%), so we can say
that MLP has more accuracy for multi-class classification.
Other than that, MLP couldn’t get the best result for any
region. CNN algorithm is examined as the most successful
model with 86.76% accuracy for healthy people and 74.48%
for amputee patients. The lack of CNN accuracies according
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TABLE II
COMPARISON OF OVERALL ACCURACY

Below-Elbow Above-Elbow Below-Knee Above-Knee General Accuracy
Healty Amputee Healty Amputee Healty Amputee Healty Amputee Healty Amputee

kNN 65.9321% - 92.6% 66.25% 87.5% 67.6991% 92.4% 61.6667% 84.608% 65.2053%
Decision Tree 60.6909% - 84.9% 62.5% 80.4% 63.2743% 82.9% 65.8333% 77.2227% 63.8692%
MLP 73.8535% - 90.7% 67.5% 87.1% 63.2743% 91.6% 63.3333% 85.8134% 64.7025%
CNN 72.0238% - 94.5% 79.1667% 86.5% 72.0588% 94% 72.2222% 86.7560% 74.4826%
RNN 75% - 79.67% 66.67% 82.33% 61.76% 90% 63.89% 81.7500% 64.1067%

to MLP algorithm is TAWD and healthy TAAD but, even for
these regions, it is not far behind. RNN is, like MLP, only
have good results for TAWD while other region successes are
far behind other algorithms. For machine learning algorithms,
cross validation (k=10) is used to split the data, while CNN
and RNN data are splitted as 70% for training.

IV. CONCLUSION
The proposed deep learning-based movement recognition

method achieves 86.75% accuracy for healthy people and
74.48% for amputated people on average. When we examine
the sEMG signals of our dataset we observed that neuromuscu-
lar activity of the muscles is different in healthy and amputated
people due to signals recieved from remaining muscles of
the residual limb depending on amputation level. A new
muscle activation pattern specific to phantom motor execution
appears because the mass, structure and insertion of the
muscles changes after amputation. Therefore, the performance
of classifiers on amputated data has resulted in 14% - 22%
less than that of healthy participants. Another major finding
of our experiments reveals that the deep models achieve higher
accuracies than the shallow models. However, the primary dis-
advantage of the classifiers using deep models is that they need
higher capacity enabled hosts such as cloud environments. As
a result of our classification scores, PLP patients can be able
to participate in cybertherapy as attending in virtual reality
and augmented reality sessions as an alternative to traditional
mirror therapy.
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