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Abstract—The simulation of cortical electrical activity of the
cerebral cortex is very important for the treatment of neurological
disorders involving seizures such as epilepsy, parkinson and etc.
It is assumed that the mathematical model of the brain cortex has
been exactly modeled. However, the cortex dynamics are highly
nonlinear and chaotic under some conditions. The stabilization
of seizures becomes difficult when cortex dynamics are unknown
or uncertain. This paper presents design and application of
the simple adaptive fuzzy control and proportional-integral-
derivative (PID) control to the stabilization of the unknown
epileptic dynamics. Assuming that all of the system states are
not suitable for the measurement where only the system output
is available. An adaptive update rule has been designed to allow
the adjustment of the controller parameters. Simulation results
show that the desired performance for the stabilization of epileptic
seizure is achieved via simple controllers.

Keywords—Epileptic seizures, adaptive fuzzy control, PID con-
trol, stabilization.

I. INTRODUCTION

The functions of the human brain, which is one of the most
complex system, can be investigated by analyzing synaptic
transmissions. Uncontrolled seizures can lead to irreversible
damages in the brain and various limitations in the patient’s
life [1]. Therefore, the analyze of brain signals and the investi-
gation of impending epileptic seizure precursors have become
very important [2], [3]. Recurrent seizures are recorded by
electroencephalography (EEG), which records electrical activ-
ity in brain tissues. In the literature, active brain stimulation
designs are available to stabilize high amplitude regular spike
wave oscillations that cause epilepsy seizures [3]–[5]. An
electrical or optogenetic stimulation is required to produce
a suitable control signal capable of stabilizing the traumatic
membrane potential in the epileptic seizure [6].

Adaptive fuzzy controllers, which based on the feedback
linearization rule, are used to control nonlinear systems in
diverse areas [7]. Using by this approach, a nonlinear control
problem becomes a linear control problem [8]. There are many
studies based on adaptive fuzzy approach in the literature. For
example, in [9], analysis of the electroencephalogram (EEG)
signal with a fuzzy interference system has revealed normal
and onset of epilepsy phases. The control of possible future
penetration analysis in biological systems with fuzzy controller
is examined in [10]. Wang et al. proposed an adaptive fuzzy

synchronization method for chaotic systems with unknown
nonlinearities and disturbances [11]. In [12], an adaptive fuzzy
Kalman filter type was proposed to suppress epileptic spikes
in a neural mass model with uncertain measurement noise.

In this paper, conventional adaptive fuzzy and PID con-
trollers have been designed to suppress epileptic seizures of the
nonlinear cortex model. Thus, unmeasurable cortex dynamics
have also been bounded within their limit values. The aim is
here to show the applicability of the both controllers not to
compare them. If the controller algorithms are embedded into
microcontrollers, they can be applied to the patient in the form
of electrical or optogenetic stimulation. In this way, mobile
devices can be utilized to treat the epilepsy seizure in early
phase.

The rest of this paper is organized as follows. The conven-
tional indirect adaptive fuzzy control is revised in Section I-A,
respectively. The mathematical dynamics of cortex model is
explained in Section II. The computational results are shown
in Section III, respectively. Finally, Section IV concludes the
paper.

A. Adaptive Fuzzy Control (Indirect Formulation)

An nth order nonlinear system can be described as

ẋ1 =x2,

ẋ2 =x3,

...

x(n) =f(x) + g(x)u

y =x1

(1)

where f and g are unknown functions, u ∈ R and y ∈ R
are the input and output of the plant respectively. Let x =
(x1, x2, . . . , xn)

T = (x, ẋ, . . . , x(n−1))T is state vector of the
system that is assumed to be measurable. It must be noted
that g(x) �= 0 to (1) be controllable. Beside without loss of
generality it is assumed that g(x) > 0. Since it is assumed that
f(x) and g(x) are unknown, a collection of fuzzy IF-THEN
rules, that describe the input-output behavior of the system,
can be employed to construct the fuzzy system if some plant
knowledge is available. These rules can be shown that

IFx1 isF1
rand . . . andxn isFn

rTHEN f(x)isCr

IF x1 isG1
sand . . . andxn isGn

sTHEN g(x)isDr (2)
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where Fi
r, Cr, Gi

s and Ds are fuzzy sets and r = 1, 2, . . . , Lf

and s = 1, 2, . . . , Lg . If a reference signal ym and its
derivative are known and bounded, to the plant output y
to follow the reference signal, firstly, let the tracking error
e = ym − y = ym − x, e = (e, ė, . . . , e(n−1)) and
k = (kn, . . . , k1)

T which is the coefficients of the Hurwitzian
polynomial λn−1 + kn−1λ

n−2 + ...+ k1 and then control law
can be chosen as

u∗ =
1

g(x)

[
− f(x) + ym

(n) + kTe
]

(3)

Thus, the plant output converges to reference signal asymptot-
ically as t → ∞. The fuzzy systems f̂(x|θf ) and ĝ(x|θg),
which are constructed from the rules (2), can be used instead
of f(x) and g(x) in (3) since they are unknown. Here,

f̂(x|θf ) =
∑p

l=1 ȳ
l
f

(∏n
i=1 µ

l
Ai
(xi)

)
∑p

l=1

(∏n
i=1 µ

l
Ai
(xi)

) (4)

and

ĝ(x|θg) =
∑q

l=1 ȳ
l
f

(∏n
i=1 µ

l
Bi
(xi)

)
∑q

l=1

(∏n
i=1 µ

l
Bi
(xi)

) (5)

which are constructed with using product inference engine,
singleton fuzzyfier and center average defuzzyfier. So the fuzzy
controller is obtained as

u = uI
1

ĝ(x|θg)
[
− f̂(x|θf ) + ym

(n) + kTe
]

(6)

If ȳf
l and ȳg

l are free parameters so we can rewrite (4) and
(5) in a compact form as

f̂(x|θf ) = θf
T ξ(x) (7)

ĝ(x|θg) = θg
Tη(x) (8)

where ξ(x) and η(x) are can be shown that

ξ(x) =

∏n
i=1 µ

l
Ai
(xi)

)
∑p

l=1

(∏n
i=1 µ

l
Ai
(xi)

) (9)

and

η(x) =

∏n
i=1 µ

l
Bi
(xi)

)
∑q

l=1

(∏n
i=1 µ

l
Bi
(xi)

) (10)

Beside θf and θg are the parameter vectors, values of which
are chosen randomly, and its dimension is defined by the
number of rules. The adaptation laws of the parameters are
employed as

θ̇f = −γ1e
TPbξ(x) (11)

and

η(x) = −γ2e
TPbη(x)uI (12)

where γ1, γ2 are positive constants and the details of P and
b can be found in [13].

II. MATHEMATICAL MODEL OF CORTEX DYNAMICS

Electrical activity of the brain cortex model is mathe-
matically modeled by stochastic partial differential equations.
Some diseases such as epilepsy, parkinson, anesthesia and etc.
can be invastigated and treated using electrical stimulation
and optogenetic application. The constructed cortex model in
SPDEs [14] is converted into ordinary differential equations
[15] as

ḣe(t) =((hrest
e − he) + ψee(he)Iee + ψie(he)Iie)/τe,

ḣi(t) =((hrest
i − hi) + ψei(hi)Iei + ψii(hi)Iii)/τi,

İee(t) =Jee,

J̇ee(t) =− 2γeJee − γ2
eIee + [Nβ

eeSe(he) + φe + pee]Geγee

+ Γ1,

İei(t) =Jei,

J̇ei(t) =− 2γeJei − γ2
eIei + [Nβ

eiSe(he) + φi + pei]Geγee

+ Γ2,

İie(t) =Jie,

J̇ie(t) =− 2γiJie − γ2
i Iie + [Nβ

ieSi(hi) + pie]Giγie+ Γ3,

İii(t) =Jii,

J̇ii(t) =− 2γiJii − γ2
i Iii + [Nβ

iiSi(hi) + pii]Giγie+ Γ4,

φ̇e(t) =χe,

χ̇e(t) =− 2ν̄Λeeχe − (ν̄Λee)
2φe+

ν̄ΛeeN
α
ee(

∂

∂t
+ ν̄Λee)Se(he),

φ̇i(t) =χi,

χ̇i(t) =− 2ν̄Λeiχi − (ν̄Λei)
2φi+

ν̄ΛeiN
α
ei(

∂

∂t
+ ν̄Λei)Se(he),

(13)
where the indices e and i indicate the excitatory and inhibitory
neuron populations. The states he(mV ) and hi(mV ) imply the
excitatory and inhibitory mean soma potential for a neuronal
population, respectively. Iee(mV ) is the postsynaptic activa-
tion of the excitatory population and Iei(mV ) is the postsynap-
tic activation of the inhibitory population due to inputs from
excitatory population. Similarly, Iie(mV ) is the postsynaptic
activation of the excitatory population and Iii(mV ) is the
postsynaptic activation of the inhibitory population due to
inputs from inhibitory population. φe(s

−1) and φi(s
−1) are

corticocortical inputs to excitatory and inhibitory populations,
respectively. The variables Γi are the stochastic inputs. In ad-
dition, ψjk(hk)(j, k ∈ e, i) =

hrev
j −hk

|hrev
j −hrest

k | , (j, k ∈ e, i) terms
are weighting factors for Ijk inputs. The sigmoid functions
mapping to the soma potential to the firing rate are expressed as
Se(he) =

Smax
e

1+exp[−ge(he−θe)]
and Si(hi) =

Smax
i

1+exp[−gi(hi−θi)]
.

The Pee and Γe parameters in the dimensionless form of
the cortex model are

Pee =
pee

Smax
e

, Γe =
GeeS

max
e

γe|hrev
e − hrest

e |
. (14)

In fact, these parameters provide the transtions between the
epileptic and normal states. According to [16], the ”normal
state” occurs when pee = 1100 and Ge = 0.18mV with Γe =
1.42 × 10−3. Also, the ”epileptic state” occurs when pee =
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54800 and Ge = 0.1mV with Γe = 0.8 × 10−3. Figure 1
illustrates these phases. The parameters of the cortex model
are shown in Table I.

The normal and epileptic behaviors of the cortex dynamics
are illustrated in Figure 1, respectively. The normal state is
assumed that there is no complex brain activities. However,
the epileptic seizure has an known ossilatory behavior which
is an undesired situtation for the patients. In order to stabilize
the epielptic seizures, it is assumed that the beginning of the
seizure is detected by EEG signals or heart rate activities.
Then, using these detection signal, the designed controllers are
applied to stabilize the epileptic behavior of the brain cortex.
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(a) Normal state.
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(b) Epileptic state.

Fig. 1. Uncontrolled normal and epileptic states.

III. COMPUTATIONAL RESULTS

Consider that the nonlinear cortex model is assumed in the
form of

˙̂
he(t) = f̂(he) + ĝ(he)u(t),

ŷ = ĥe,
(15)
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(b) Control signal.

Fig. 2. Stabilization results: adaptive fuzzy and PID controllers.

TABLE I. PARAMETERS OF THE CORTEX MODEL.

τe, τi Membrane time constant 0.04, 0.04 s
hrest
e , hrest

i Resting potential -70, -70 mV
hrev
e , hrev

i Reversal potential 45, -90 mV

pee, pie
Subcortical spike
input to e population 1100, 1600 s−1

pei, pii
Subcortical spike
input to i population 1600, 1100 s−1

∧ee,∧ei Corticotical inverse-length 0.04, 0.065 mm−1

γe, γi
Neurotransmitter rate constant
for e, i postsynaptic potential 300, 65 s−1

Ge, Gi
Peak amplitude of e
i postsynaptic potential 0.18, 0.37 mV

Nβ
ee, N

β
ei

Total number of local
synaptic connections of e 3034, 3034

Nβ
ie, N

β
ii

Total number of local
synaptic connections of i 536, 536

Nα
ee, N

α
ei

Total number of synaptic
connections from distant
e populations

4000, 2000

v̄ Mean axonal conduction speed 7000 mms−1

Smax
e , Smax

i Maximum of sigmoid function 100, 100 s−1

θe, θi
Inflection-point potential
for sigmoid function -60, -60 mV

ge, gi Slope at inflection point 0.28, 0.14 mV −1

where he(t) ∈ � measured membrane potential, ĥe is the
identified membrane potential, u(t) ∈ � is the applied control
signal. The f(.) and g(.) are nonlinear fuzzy basis functions.
The membrane potential is measured output where in case
of epileptic oscillations it is stabilized applying a suitable
control signal. For the PID control, the parameters are tuned
manually from an interval as Kp = 50, Ki = 20 and Kd = 5,
respectively. For the adaptive fuzzy control, the feedback
constant K is selected as 100. Then, the membership functions
are selected as Gaussian membership functions with centers
between [−60, 10] and the standart value 10, respectively.
The parameter learning rates are chosen as 100. Using these
parameters, the stabilization results are shown in Figure 2.
Both stabilization results are successful however the adaptive
fuzzy control produces much better results in terms of the
stabilization error and applied control signal. Using an offline
parameter optimization method for PID, better stabilization
results can be provided. Noting that the adaptiveness of the
adaptive fuzzy control has an important power for unknown
systems control. In Figure 3(a), complete state set are plotted
to show their boundedness. Figure 3(b) shows the fuzzy
basis functions to see the fired fuzzy membership functions.
Figure 3(c) and Figure 3(d) demonstrate the adapted fuzzy
parameters to stabilize the system dynamics which are bounded
and stable.

IV. CONCLUSION

In this paper, two well-known controllers are applied to
the unknown cortex dynamics for the stabilization of epileptic
seizures. Adaptive fuzzy control can be designed by simple
parameter tuning. Using the current results, the adaptiveness
of the adaptive fuzzy control method provided much better
stabilization results. However, using an offline optimization
method or parameter adaptation method, PID control can also
be redesigned and better stabilization results can be obtained.
The parameter selection of PID controller is needed to satisfy
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(c) Adaptive parameters θ̂f .
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Fig. 3. Adaptive fuzzy control results.

the constraints of small tracking error and less control signal
power.
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